SCOPE OF ACCREDITATION TO ISO/IEC 17043:2010 # AASHTO re:source 4441 Buckeystown Pike, Suite A Frederick, MD 21704 Tracy Barnhart tbarnhart@aashtoresource.org #### PROFICIENCY TESTING PROVIDER Valid To: March 31, 2025 Certificate Number: 4159.01 In recognition of the successful completion of the A2LA evaluation process, this proficiency testing provider has been found to meet ISO/IEC 17043:2010, "Conformity assessment-General Requirements for Proficiency Testing". Accreditation is granted to this provider to provide proficiency testing samples in the following programs: | | - | | |------------------------------------|---|--| | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | | Soil Classification and Compaction | Total material passing the 2.00-mm (No. 10) sieve Total material passing the 0.425-mm (No. 40) sieve Total material passing the 0.075-mm (No. 200) sieve Total material smaller than 0.02 mm Total material smaller than 0.002 mm Total material smaller than 0.001 mm Liquid limit | AASHTO T 88 Standard Method of
Test for Particle Size Analysis of Soils
ASTM D422 Standard Test Method for
Particle-Size Analysis | | | • | Test for Determining the Liquid Limit of Soils ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils | | | 1. Plastic limit | AASHTO T 90 Standard Method of Test for Determining the Plastic Limit and Plasticity Index of Soils ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils | | | Shrinkage limit (Water Submersion Method) | ASTM D4943 Standard Test Method
for Shrinkage Factors of Cohesive Soils
by the Water Submersion Method | | | Optimum moisture content (Standard) Maximum dry density (Standard) | AASHTO T 99 Standard Method of
Test for Moisture-Density Relations of
Soils Using a 2.5-kg (5.5-lb) Rammer
and a 305-mm (12-in.) Drop | | | | ASTM D698 Standard Test Methods | (A2LA Cert. No. 4159.01) 01/20/2021 Page 1 of 17 | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |--|--|--| | Soil Classification and
Compaction (cont) | | for Laboratory Compaction
Characteristics of Soil Using Standard
Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)) | | | 1. Specific gravity, passing 2.00 mm (No. 10), TX / 20°C | AASHTO T 100 Standard Method of
Test for Specific Gravity of Soils ASTM D854 Standard Test Methods | | | | for Specific Gravity of Soil Solids by
Water Pycnometer | | | Optimum moisture content (Modified) Maximum dry density (Modified) | AASHTO T 180 Standard Method of
Test for Moisture-Density Relations of
Soils Using a 4.54-kg (10-lb) Rammer
and a 457-mm (18-in.) Drop | | | | ASTM D1557 Standard Test Methods
for Laboratory Compaction
Characteristics of Soil Using Modified
Effort (56,000 ft-lbf/ft3 (2,700 kN-
m/m3)) | | | Particle diameter (D) at 4 minutes of sedimentation Particle diameter (D) at 30 minutes of sedimentation Particle diameter (D) at 60 minutes of sedimentation | ASTM D7928 Standard Test Method
for Particle-Size Distribution
(Gradation) of Fine-Grained Soils
Using the Sedimentation (Hydrometer)
Analysis | | | 4. Particle diameter (D) at 240 minutes of sedimentation 5. Particle diameter (D) at 1440 minutes of sedimentation 6. Total percent finer (Nm) at 4 minutes of | | | | sedimentation 7. Total percent finer (Nm) at 30 minutes of sedimentation 8. Total percent finer (Nm) at 60 minutes of sedimentation | | | | 9. Total percent finer (Nm) at 240 minutes of sedimentation10. Total percent finer (Nm) at 1440 minutes of sedimentation | | | Soil Resistance
R-Value | Water (Moisture) content as received R-Value at 300 psi (2068 kPa) exudation pressure | AASHTO T 190 Standard Method of
Test for Resistance R-Value and
Expansion Pressure of Compacted Soils | | | | ASTM D2844 Standard Test Method
for Resistance R-Value and Expansion
Pressure of Compacted Soils | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |-----------------------------------|--|--| | California Bearing Ratio
(CBR) | Water (Moisture) content as Received Water content immediately Before Compaction | AASHTO T 193 Standard Method of
Test for The California Bearing Ratio | | | 3. Water content of unused material immediately after compaction4. Dry unit weight of compacted specimen before | ASTM D1883 Standard Test Method
for California Bearing Ratio (CBR) of
Laboratory-Compacted Soils | | | soaking5. Swell - percentage of initial specimen height6. CBR (corrected) at 0.1 in. penetration | | | | 7. CBR (corrected) at 0.2 in. penetration | | | Coarse Aggregate | 1. Percentage finer than the 75-μm sieve by washing | AASHTO T 11 Standard Method of
Test for Materials Finer Than 75-µm
(No. 200) Sieve in Mineral Aggregates
by Washing | | | | ASTM C117 Standard Test Method for
Materials Finer than 75-µm (No. 200)
Sieve in Mineral Aggregates by
Washing | | | 1. Total material passing the 25.0-mm (1-in.) sieve | AASHTO T 27 Standard Method of
Test for Sieve Analysis of Fine and | | | 2. Total material passing the 19.0-mm (3/4-in.) sieve | Coarse Aggregates | | | 3. Total material passing the 12.5-mm (1/2-in.) sieve | ASTM C136 Standard Test Method for Sieve Analysis of Fine and Coarse | | | 4. Total material passing the 9.5-mm (3/8-in.) sieve 5. Total material passing the 4.75-mm (No. 4) | Aggregates | | | sieve | | | | Bulk specific gravity [or relative density, OD for C127] Bulk specific gravity, SSD [or relative density, | AASHTO T 85 Standard Method of
Test for Specific Gravity and
Absorption of Coarse Aggregate | | | SSD for C127] 3. Apparent specific gravity [or apparent relative | ASTM C127 Standard Test Method for | | | density for C127] 4. Absorption | Relative Density (Specific Gravity) and Absorption of Coarse Aggregate | | | Percentage of loss by abrasion and impact | AASHTO T 96 Standard Method of Test for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine | | | | ASTM C131 Standard Test Method for Resistance to Degradation of Small- | | | | Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine | | | Sodium sulfate-percentage of 19.0 to 9.5-mm fraction passing 8.0-mm sieve | AASHTO T 104 Standard Method of
Test for Soundness of Aggregate by | | | 2. Sodium sulfate-percentage of 9.5 to 4.75-mm fraction passing 4.0-mm sieve | Use of Sodium Sulfate or Magnesium Sulfate | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |-------------------------|---|--| | Coarse Aggregate (cont) | Magnesium sulfate-percentage of 19.0 to 9.5-mm fraction passing 8.0-mm sieve Magnesium sulfate-percentage of 9.5 to 4.75-mm fraction passing 4.0-mm sieve Percentage of loss in the Micro-Deval | ASTM C 88 Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate AASHTO T 327 Standard Method of Test for Resistance of Coarse Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus ASTM D6928 Standard Test Method for Resistance of Coarse Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus | | Fine Aggregate | Total oven dry mass of specimen before washing Percentage finer than the 75-μm sieve by washing | AASHTO T 11 Standard Method of Test for Materials Finer Than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing ASTM C117 Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing | | | Total material passing the 4.75-mm (No. 4) sieve Total material passing the 2.36-mm (No. 8) sieve Total material passing the 1.18-mm (No. 16) sieve Total material passing the 600-μm (No. 30) sieve Total material passing the 300-μm (No. 50) sieve Total material passing the 150-μm (No. 100) sieve Total material passing the 75-μm (No. 200) sieve | AASHTO T 27 Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates ASTM C136 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates | | | Bulk specific gravity [or relative density, oven dry for C128] Bulk specific gravity, SSD [or relative density, SSD for C128] Apparent specific gravity [or apparent relative density for C128] Absorption Material finer than the 1.18-mm sieve, Na Material finer than the 600-μm sieve, Na Material finer than the 1.18-mm sieve, Na Material finer than the 1.18-mm sieve, Na Material finer than the 1.18-mm sieve, Mg Material finer than the 600-μm sieve, Mg Material finer than the 300-μm sieve, Mg Material finer than the 300-μm sieve, Mg | AASHTO T 84 Standard Method of Test for Specific Gravity and Absorption of Fine Aggregate ASTM C128 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate AASHTO T 104 Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate ASTM C88 Standard Test Method for Soundness of Aggregates by Use of | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |------------------------------------|--|---| | Fine Aggregate (cont) | Sand equivalent value | Sodium Sulfate or Magnesium Sulfate AASHTO T 176 Standard Method of Test for Plastic Fines in Graded | | | | Aggregates and Soils by Use of the Sand Equivalent Test ASTM D2419 Standard Test Method | | | | for Sand Equivalent Value of Soils and Fine Aggregate | | | 1. Uncompacted voids, test run # 1 | AASHTO T 304 Standard Method of | | | 2. Uncompacted voids, test run # 23. Uncompacted voids, average of two runs | Test for Uncompacted Void Content of Fine Aggregate | | | | ASTM C1252 Standard Test Methods for Uncompacted Void Content of Fine | | | | Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading) | | | 1. Micro-Deval abrasion loss | ASTM D7428 Standard Test Method | | | | for Resistance of Fine Aggregate to Degradation by Abrasion in the Micro- | | | | Deval Apparatus | | Viscosity Graded Asphalt
Cement | 1. Corrected flash point | AASHTO T 48 Standard Method of
Test for Flash Point of Asphalt Binder | | Cement | | by Cleveland Open Cup | | | | ASTM D92 Standard Test Method for | | | | Flash and Fire Points by Cleveland Open Cup Tester | | | 1. Penetration of original sample at 25 °C, 100 g, | AASHTO T 49 Standard Method of | | | 5 s 2. Penetration of original sample at 4 °C, 200 g, | Test for Penetration of Bituminous
Materials | | | 60 s | Waterials | | | | ASTM D5 Standard Test Method for Penetration of Bituminous Materials | | | 1. Kinematic viscosity of original asphalt at 135 °C | AASHTO T 201 Standard Method of | | | | Test for Kinematic Viscosity of Asphalts (Bitumens) | | | | ASTM D2170 Standard Test Method for Kinematic Viscosity of Asphalts | | | 1. Viscosity of original asphalt at 60 °C | AASHTO T 202 Standard Method of
Test for Viscosity of Asphalts by | | | | Vacuum Capillary Viscometer | | | | ASTM D2171 Standard Test Method | | | | for Viscosity of Asphalts by Vacuum
Capillary Viscometer | | | 1. Specific gravity (relative density) at 25/25 °C | AASHTO T 228 Standard Method of
Test for Specific Gravity of Semi-Solid | | | | Asphalt Materials | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |---|--|--| | Viscosity Graded Asphalt
Cement (cont) | | ASTM D70 Standard Test Method for
Density of Semi-Solid Asphalt Binder
(Pycnometer Method) | | | 1. Change in mass | AASHTO T 240 Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test) ASTM D2872 Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test) | | Viscosity Graded Asphalt
Cement - Tests on
Rolling Thin Film Oven
(RTFO) Residue | Penetration of RTFO residue at 25 °C, 100 g, 5 s Penetration of RTFO residue at 4 °C, 200 g, 60 s | AASHTO T 49 Standard Method of
Test for Penetration of Bituminous
Materials | | | Kinematic viscosity of RTFO residue at 135 °C | ASTM D5 Standard Test Method for
Penetration of Bituminous Materials
AASHTO T 201 Standard Method of
Test for Kinematic Viscosity of
Asphalts (Bitumens) | | | 1. Viscosity of RTFO residue at 60 °C | ASTM D2170 Standard Test Method
for Kinematic Viscosity of Asphalts
AASHTO T 202 Standard Method of
Test for Viscosity of Asphalts by
Vacuum Capillary Viscometer | | Performance Graded | Corrected flash point | ASTM D2171 Standard Test Method
for Viscosity of Asphalts by Vacuum
Capillary Viscometer
AASHTO T 48 Standard Method of | | Asphalt Binder – Tests
on Original Binder | - | Test for Flash Point of Asphalt Binder by Cleveland Open Cup ASTM D92 Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester | | | 1. Specific gravity (relative density) at 25/25 °C | AASHTO T 228 Standard Method of
Test for Specific Gravity of Semi-Solid
Asphalt Materials ASTM D70 Standard Test Method for
Density of Semi-Solid Asphalt Binder
(Pycnometer Method) | | | Average percent elongation recovery | AASHTO T 301 Standard Method of
Test for Elastic Recovery Test of
Asphalt Materials by Means of a
Ductilometer | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |--|---|--| | Performance Graded
Asphalt Binder – Tests
on Original Binder (cont) | | ASTM D6084 Standard Test Method
for Elastic Recovery of Asphalt
Materials by Ductilometer | | | Complex shear modulus, G* Phase angle, ŏ G* / sin ŏ (Original) | AASHTO T 315 Standard Method of
Test for Determining the Rheological
Properties of Asphalt Binder Using a
Dynamic Shear Rheometer (DSR) | | | | ASTM D7175 Standard Test Method
for Determining the Rheological
Properties of Asphalt Binder Using a
Dynamic Shear Rheometer | | | 1. Rotational viscosity at 135 °C | AASHTO T 316 Standard Method of
Test for Viscosity Determination of
Asphalt Binder Using Rotational
Viscometer | | | | ASTM D4402 Standard Test Method
for Viscosity Determination of Asphalt
at Elevated Temperatures Using a
Rotational Viscometer | | | 1. Ash content of the residue | ASTM D8078 Standard Test Method
for Ash Content of Asphalt and
Emulsified Asphalt Residues | | Performance Graded
Asphalt Binder - Tests on
Rolling Thin Film Oven
(RTFO) Material | 1. Change in mass | AASHTO T 240 Standard Method of
Test for Effect of Heat and Air on a
Moving Film of Asphalt Binder
(Rolling Thin-Film Oven Test) | | | | ASTM D2872 Standard Test Method
for Effect of Heat and Air on a Moving
Film of Asphalt (Rolling Thin-Film
Oven Test) | | | Complex shear modulus, G* Phase angle, ð G* / sin ð (Original) | AASHTO T 315 Standard Method of
Test for Determining the Rheological
Properties of Asphalt Binder Using a
Dynamic Shear Rheometer (DSR) | | | | ASTM D7175 Standard Test Method
for Determining the Rheological
Properties of Asphalt Binder Using a
Dynamic Shear Rheometer | | | Average percent recovery at 0.1 kPa, R0.1 Average percent recovery at 3.2 kPa, R3.2 Percent difference in recovery between 0.1 and 3.2 kPa, Rdiff | AASHTO T 350 Standard Method of
Test for Multiple Stress Creep
Recovery (MSCR) Test of Asphalt
Binder Using a Dynamic Shear | | | 4. Non-recoverable creep compliance at 0.1 kPa, Jnr0.1 5. Non-recoverable creep compliance at 3.2 kPa, | Rheometer (DSR) ASTM D7405 Standard Test Method | | PT Scheme ¹ | Measurands or Properties/Characteristics <u>Tested</u> | Test Method Titles/Type of PT Item(s) | |---|---|--| | | Jnr3.2 6. Percent difference of non-recoverable creep compliance, Jnr-diff | for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer | | Performance Graded | Not Applicable – the referenced standards under | Sample Conditioning | | Asphalt Binder - Tests on | 'Test Method Titles/Type of PT Item(s)' column | Procedures/Methods: | | Pressurized Aging Vessel
(PAV) Residue | are sample conditioning procedures/methods which support the testing for the applicable PT scheme. Therefore, there is no measurand or characteristic to be identified. | AASHTO R 28 Standard Practice for
Accelerated Aging of Asphalt Binder
Using a Pressurized Aging Vessel
(PAV) | | | | ASTM D6521 Standard Practice for
Accelerated Aging of Asphalt Binder
Using a Pressurized Aging Vessel
(PAV) | | | Estimated stiffness (Average) Estimated slope, m-value (Average) | AASHTO T 313 Standard Method of
Test for Determining the Flexural
Creep Stiffness of Asphalt Binder
Using the Bending Beam Rheometer
(BBR) | | | | ASTM D6648 Standard Test Method
for Determining the Flexural Creep
Stiffness of Asphalt Binder Using the
Bending Beam Rheometer (BBR) | | | Complex shear modulus, G* Phase angle, ð G* / sin ð (Original) | AASHTO T 315 Standard Method of
Test for Determining the Rheological
Properties of Asphalt Binder Using a
Dynamic Shear Rheometer (DSR) | | | | ASTM D7175 Standard Test Method
for Determining the Rheological
Properties of Asphalt Binder Using a
Dynamic Shear Rheometer | | Slurry and Micro
Systems | Water (moisture) content as received | AASHTO T 255 Standard Method of
Test for Total Evaporable Moisture
Content of Aggregate by Drying | | | | ASTM C566 Standard Test Method for
Total Evaporable Moisture Content of
Aggregate by Drying | | | 1. Loss corrected to C-100 mixer | ISSA TB-100 Test Method for Wet
Track Abrasion of Slurry Surfacing
Systems | | | | ASTM D3910 Standard Practices for
Design, Testing, and Construction of
Slurry Seal | | | | ASTM D6372 Standard Practice for | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |---|---|--| | Slurry and Micro
Systems (cont) | Cycle number where "audible tackiness" is determined Mass of adhered sand | Design, Testing, and Construction of Microsurfacing ISSA TB-109 Test Method for Measurement of Excess Asphalt In Bituminous Mixtures by Use of a Loaded Wheel Tester and Sand | | | Time to "break" Time to clear water set Torque value at time 30 minutes | Adhesion ISSA TB-113 Test Method for Determining Mix Time for Slurry Surfacing Systems ISSA TB-139 Test Method to | | | Torque value at time 60 minutes Torque value at time 90 minutes Torque value at time 120 minutes Torque value at time 30 minutes | Determine Set and Cure Development
of Slurry Surfacing Systems by
Cohesion Tester ASTM D3910 Standard Practices for | | | | Design, Testing, and Construction of
Slurry Seal ASTM D6372 Standard Practice for
Design, Testing, and Construction of
Microsurfacing | | | Percent vertical displacement as percent of original thickness Percent lateral displacement as percent increase of width | ISSA TB-147 Test Method for
Measurement of Stability and
Resistance to Compaction, Vertical and
Lateral Displacement of Multilayered
Fine Aggregate Cold Mixes
ASTM D6372 Standard Practice for | | Emulsified Asphalt | Saybolt furol viscosity | Design, Testing, and Construction of Microsurfacing AASHTO T 59 Standard Method of Test for Emulsified Asphalts | | | | ASTM D7496 Standard Test Method for Viscosity of Emulsified Asphalt by Saybolt Furol Viscometer | | | 1. Apparent viscosity at 50°C | AASHTO T 382 Standard Method of
Test for Determining the Viscosity of
Emulsified Asphalt by a Rotational
Paddle Viscometer | | | | ASTM D7226 Standard Test Method
for Determining the Viscosity of
Emulsified Asphalts Using a Rotational
Paddle Viscometer | | Emulsified Asphalt – Tests on Residue by Distillation | Percent solubility of the residue | AASHTO T 44 Standard Method of
Test for Solubility of Bituminous
Materials | | PT C 1 1 | | T (M (1 1 T) (1 /T CDT I) () | |--|---|--| | PT Scheme ¹ | Measurands or Properties/Characteristics <u>Tested</u> | Test Method Titles/Type of PT Item(s) | | Emulsified Asphalt – Tests on Residue by Distillation (cont) | | ASTM D2042 Standard Test Method
for Solubility of Asphalt Materials in
Trichloroethylene | | | 1. Penetration of the residue @ 25 °C (Distillation) | AASHTO T 49 Standard Method of
Test for Penetration of Bituminous
Materials | | | | ASTM D5 Standard Test Method for
Penetration of Bituminous Materials | | | Percent residue Percent oil distillate by volume of emulsion | AASHTO T 59 Standard Method of
Test for Emulsified Asphalts | | Emploified Ambelt | Percent Solubility of the Residue (Distillation) | ASTM D6997 Standard Test Method
for Distillation of Emulsified Asphalt
AASHTO T 44 Standard Method of | | Emulsified Asphalt – Tests on Residue by Evaporation | 1. Telcent Solubility of the Residue (Distillation) | Test for Solubility of Bituminous Materials | | | | ASTM D2042 Standard Test Method
for Solubility of Asphalt Materials in
Trichloroethylene | | | 1. Penetration of the Residue @ 25 °C (Distillation) | AASHTO T 49 Standard Method of
Test for Penetration of Bituminous
Materials | | | | ASTM D5 Standard Test Method for
Penetration of Bituminous Materials | | | Percent Residue - average of beakers | AASHTO T 59 Standard Method of
Test for Emulsified Asphalts | | | | ASTM D6934 Standard Test Method
for Residue by Evaporation of
Emulsified Asphalt | | | 1. Ash Content of the Residue | ASTM D8078 Standard Test Method
for Ash Content of Asphalt and
Emulsified Asphalt Residues | | Asphalt Mixture Solvent Extraction | Sample mass, assume moisture free Percent asphalt | AASHTO T 164 Standard Method of
Test for Quantitative Extraction of
Asphalt Binder from Hot Mix Asphalt
(HMA) | | | | ASTM D2172 Standard Test Methods
for Quantitative Extraction of Asphalt
Binder from Asphalt Mixtures | | | | AASHTO T 319 Standard Method of
Test for Quantitative Extraction and
Recovery of Asphalt Binder from
Asphalt Mixtures | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |--|---|--| | Asphalt Mixture Solvent Extraction (cont) | | ASTM D8159 Standard Test Method
for Automated Extraction of Asphalt
Binder from Asphalt Mixtures | | | Mass removed by washing over 75-μm (No. 200) sieve Total material passing the 12.5-mm (1/2 in.) sieve Total material passing the 9.5-mm (3/8 in.) sieve Total material passing the 4.75-mm (No. 4) | AASHTO T 30 Standard Method of Test for Mechanical Analysis of Extracted Aggregate ASTM D5444 Standard Test Method for Mechanical Size Analysis of Extracted Aggregate | | | sieve Total material passing the 2.36-mm (No. 8) sieve Total material passing the 1.18-mm (No. 16) sieve Total material passing the 600-μm (No. 30) sieve Total material passing the 300-μm (No. 50) sieve Total material passing the 150-μm (No. 100) sieve Total material passing the 75-μm (No. 200) | | | Asphalt Mixture Solvent Extraction - Recovery and Testing of Asphalt Residue | Not Applicable – the referenced standards under 'Test Method Titles/Type of PT Item(s)' column are sample conditioning procedures/methods which support the testing for the applicable PT scheme. Therefore, there is no measurand or characteristic to be identified. | Sample Conditioning Procedures/Methods: AASHTO R 59 Standard Practice for Recovery of Asphalt Binder from Solution by Abson Method ASTM D1856 Standard Test Method for Recovery of Asphalt From Solution by Abson Method | | | Not Applicable – the referenced standards under 'Test Method Titles/Type of PT Item(s)' column are sample conditioning procedures/methods which support the testing for the applicable PT scheme. Therefore, there is no measurand or characteristic to be identified. | Sample Conditioning Procedures/Methods: AASHTO T 319 Standard Method of Test for Quantitative Extraction and Recovery of Asphalt Binder from Asphalt Mixtures ASTM D5404 Standard Practice for Recovery of Asphalt from Solution | | | 1. Penetration of the residue @ 25°C, 100 g, 5 s (Abson) | Using the Rotary Evaporator AASHTO T 49 Standard Method of Test for Penetration of Bituminous Materials ASTM D5 Standard Test Method for Penetration of Bituminous Materials | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |---|--|---| | Asphalt Mixture Solvent Extraction - Recovery and Testing of Asphalt Residue (cont) | Kinematic viscosity of residue at 135°C (Abson) | AASHTO T 201 Standard Method of Test for Kinematic Viscosity of Asphalts (Bitumens) ASTM D2170 Standard Test Method | | | 1. Viscosity of residue at 60°C (Abson) | for Kinematic Viscosity of Asphalts AASHTO T 202 Standard Method of Test for Viscosity of Asphalts by Vacuum Capillary Viscometer | | | | ASTM D2171 Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer | | | 1. G* / sin ð tested as original binder (Abson) | AASHTO T 315 Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR) ASTM D7175 Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a | | | 1. Penetration of the residue @ 25°C, 100 g, 5 s (Rotavapor) | Dynamic Shear Rheometer AASHTO T 49 Standard Method of Test for Penetration of Bituminous Materials | | | | ASTM D5 Standard Test Method for
Penetration of Bituminous Materials | | | 1. Kinematic Viscosity of Residue at 135°C (Rotavapor) | AASHTO T 201 Standard Method of Test for Kinematic Viscosity of Asphalts (Bitumens) | | | 1. Viscosity of Residue at 60°C (Rotavapor) | ASTM D2170 Standard Test Method
for Kinematic Viscosity of Asphalts AASHTO T 202 Standard Method of
Test for Viscosity of Asphalts by | | | | Vacuum Capillary Viscometer ASTM D2171 Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer | | | 1. G* / sin ð tested as original binder (Rotavapor) | AASHTO T 315 Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR) | | | | ASTM D7175 Standard Test Method
for Determining the Rheological
Properties of Asphalt Binder Using a
Dynamic Shear Rheometer | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |------------------------------------|--|---| | Asphalt Mixture Gyratory | Specific gravity of mineral filler | AASHTO T 100 Standard Method of
Test for Specific Gravity of Soils | | | 1. Maximum specific gravity | AASHTO T 166 Standard Method of
Test for Bulk Specific Gravity (Gmb)
of Compacted Hot Mix Asphalt (HMA)
Using Saturated Surface-Dry
Specimens | | | | ASTM D2726 Standard Test Method
for Bulk Specific Gravity and Density
of Non-Absorptive Compacted Asphalt
Mixtures | | | Bulk specific gravity (Saturated Surface-Dry Method) | AASHTO T 209 Standard Method of
Test for Theoretical Maximum Specific
Gravity (Gmm) and Density of Asphalt
Mixtures | | | | ASTM D2041 Standard Test Method
for Theoretical Maximum Specific
Gravity and Density of Asphalt
Mixtures | | | Height during compaction after 8 gyrations Height during compaction after 100 gyrations Percent of maximum specific gravity after 8 gyrations Percent of maximum specific gravity after 100 gyrations | AASHTO T 312 Standard Method of
Test for Preparing and Determining the
Density of Asphalt Mixture Specimens
by Means of the Superpave Gyratory
Compactor | | | | ASTM D6925 Standard Test Method
for Preparation and Determination of
the Relative Density of Asphalt Mix
Specimens by Means of the Superpave
Gyratory Compactor | | | Bulk specific gravity (Vacuum Sealing Method) | AASHTO T 331 Standard Method of
Test for Bulk Specific Gravity (Gmb)
and Density of Compacted Hot Mix
Asphalt (HMA) Using Automatic
Vacuum Sealing Method | | | | ASTM D6752 Standard Test Method
for Bulk Specific Gravity and Density
of Compacted Asphalt Mixtures Using
Automatic Vacuum Sealing Method | | Asphalt Mixture
Marshall Design | Average bulk specific gravity | AASHTO T 166 Standard Method of
Test for Bulk Specific Gravity (Gmb)
of Compacted Hot Mix Asphalt (HMA)
Using Saturated Surface-Dry
Specimens | | | | ASTM D2726 Standard Test Method for Bulk Specific Gravity and Density | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |--|---|---| | Asphalt Mixture Marshall Design (cont) | | of Non-Absorptive Compacted Asphalt
Mixtures | | | Maximum specific gravity | AASHTO T 209 Standard Method of
Test for Theoretical Maximum Specific
Gravity (Gmm) and Density of Asphalt
Mixtures | | | | ASTM D2041 Standard Test Method
for Theoretical Maximum Specific
Gravity and Density of Asphalt
Mixtures | | | 1. Average Marshall stability | AASHTO T 245 Standard Method of
Test for Resistance to Plastic Flow of
Asphalt Mixtures Using Marshall
Apparatus | | | 1 Assessed Manchell Class | ASTM D6926 Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus AASHTO T 245 Standard Method of | | | 1. Average Marshall flow | Test for Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus | | | | ASTM D6927 Standard Test Method
for Marshall Stability and Flow of
Asphalt Mixtures | | | 1. Percent air voids | AASHTO T 269 Standard Method of
Test for Percent Air Voids in
Compacted Dense and Open Asphalt
Mixtures | | | | ASTM D3203 Standard Test Method
for Percent Air Voids in Compacted
Asphalt Mixtures | | | Bulk specific gravity (Vacuum Sealing Method) | AASHTO T 331 Standard Method of
Test for Bulk Specific Gravity (Gmb)
and Density of Compacted Hot Mix
Asphalt (HMA) Using Automatic
Vacuum Sealing Method | | | | ASTM D6752 Standard Test Method
for Bulk Specific Gravity and Density
of Compacted Asphalt Mixtures Using
Automatic Vacuum Sealing Method | | | 1. Overall average specimen height | ASTM D3549 Standard Test Method
for Thickness or Height of Compacted
Asphalt Mixture Specimens | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |------------------------------|--|---| | Asphalt Mixture Hveem Design | 1. Bulk specific gravity | AASHTO T 166 Standard Method of
Test for Bulk Specific Gravity (Gmb)
of Compacted Hot Mix Asphalt (HMA)
Using Saturated Surface-Dry
Specimens | | | | AASHTO T 331 Standard Method of
Test for Bulk Specific Gravity (Gmb)
and Density of Compacted Hot Mix
Asphalt (HMA) Using Automatic
Vacuum Sealing Method | | | | ASTM D2726 Standard Test Method
for Bulk Specific Gravity and Density
of Non-Absorptive Compacted Asphalt
Mixtures | | | 1 Marines Santita | ASTM D6752 Standard Test Method for Bulk Specific Gravity and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method | | | Maximum specific gravity | AASHTO T 209 Standard Method of
Test for Theoretical Maximum Specific
Gravity (Gmm) and Density of Asphalt
Mixtures | | | | ASTM D2041 Standard Test Method for Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures | | | Specimen height (nearest 0.01 in.) Stabilometer value uncorrected Stabilometer value corrected | AASHTO T 246 Standard Method of
Test for Resistance to Deformation and
Cohesion of Hot Mix Asphalt (HMA)
by Means of Hveem Apparatus | | | | AASHTO T 247 Standard Method of
Test for Preparation of Test Specimens
of Hot Mix Asphalt (HMA) by Means
of California Kneading Compactor | | | | ASTM D1560 Standard Test Methods
for Resistance to Deformation and
Cohesion of Asphalt Mixtures by
Means of Hveem Apparatus | | | | ASTM D1561 Standard Practice for
Preparation of Bituminous Mixture Test
Specimens by Means of California
Kneading Compactor | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |-------------------------------------|--|---| | Asphalt Mixture Hveem Design (cont) | | TEX 206-F Compacting Specimens Using the Texas Gyratory Compactor (TGC) | | | | TEX 208-F Test for Stabilometer Value of Bituminous Mixtures | | | | CP-L 5106 Resistance to Deformation of Bituminous Mixtures by Means of Hveem Apparatus | | | | CP-L 5115 Standard Method for
Preparing and Determining the Density
of Bituminous Mixture | | | 1. Percent air voids | AASHTO T 269 Standard Method of
Test for Percent Air Voids in
Compacted Dense and Open Asphalt
Mixtures | | | | ASTM D3203 Standard Test Method
for Percent Air Voids in Compacted
Asphalt Mixtures | | Asphalt Mixture Ignition
Oven | Initial (as received) mass of pre-mixed HMA sample Correction factor for asphalt binder content Corrected asphalt binder content | AASHTO T 308 Standard Method of
Test for Determining the Asphalt
Binder Content of Asphalt Mixtures by
the Ignition Method | | | | ASTM D6307 Standard Test Method
for Asphalt Content of Asphalt Mixture
by Ignition Method | | | Mass removed by washing over the 75-μm (No. 200) sieve Total material passing the 12.5-mm (1/2 in.) | AASHTO T30 Standard Method of
Test for Mechanical Analysis of
Extracted Aggregate | | | sieve 3. Total material passing the 9.5-mm (3/8 in.) sieve | ASTM D5444 Standard Test Method for Mechanical Size Analysis of | | | 4. Total material passing the 4.75-mm (No. 4) sieve 5. Total material passing the 2.36-mm (No. 8) | Extracted Aggregate | | | sieve 6. Total material passing the 1.18-mm (No. 16) | | | | sieve 7. Total material passing the 600-μm (No. 30) sieve | | | | 8. Total material passing the 300-μm (No. 50) sieve | | | | 9. Total material passing the 150-μm (No. 100) sieve 10. Total material passing the 75-μm (No. 200) | | | | sieve | | | PT Scheme ¹ | Measurands or Properties/Characteristics Tested | Test Method Titles/Type of PT Item(s) | |------------------------|---|---------------------------------------| | Paint | 1. Load to produce 200 r/min | ASTM D562 Standard Test Method for | | | 2. Krebs unit viscosity at 25°C | Consistency of Paints Measuring Krebs | | | | Unit (KU) Viscosity Using a Stormer- | | | | Type Viscometer | | | 1. Drying time for No-Pick-Up - 15 mil film | ASTM D711 Standard Test Method for | | | | No-Pick-Up Time of Traffic Paint | | | 1. Density at 25°C | ASTM D1475 Standard Test Method | | | | for Density of Liquid Coatings, Inks, | | | | and Related Products | | | 1. Percent volatile matter | ASTM D2369 Standard Test Method | | | | for Volatile Content of Coatings | | | 1. Percent pigment | ASTM D3723 Standard Test Method | | | | for Pigment Content of Water-Emulsion | | | | Paints by Low-Temperature Ashing | ¹Details on these schemes can be found at http://aashtoresource.org/psp/samples-types-and-tests. ## Accredited Proficiency Testing Provider A2LA has accredited ### **AASHTO RE:SOURCE** Frederick, MD This accreditation covers the specific proficiency testing schemes listed on the agreed upon Scope of Accreditation. This provider is accredited in accordance with the recognized International Standard ISO/IEC 17043: 2010 Conformity assessment - General requirements for proficiency testing. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system. Presented this 20th day of January 2021. Vice President, Accreditation Services For the Accreditation Council Certificate Number 4159.01 Valid to March 31, 2025